SYLLABUS:

DATA STRUCTURES

B.Tech. II Year I Semester								
Course Code	Category	Hours / Week			Credits	Maximum Marks		
DS2102PC	Core	L	T	P	С	CIA	SEE	Total
		3	1	0	4	30	70	100
Contact classes: 45	Tutorial Classes: 15	Practical classes: NIL				Total Classes :60		
Prerequisites: A course on "Programming for Problem Solving".								

Course Objectives:

- Exploring basic data structures such as stacks and queues.
- Introduces a variety of data structures such as hash tables, search trees, tries, heaps, graphs.
- Introduces sorting and pattern matching algorithm

Course Outcomes:

- Ability to select the data structures that efficiently model the information in a problem.
- Ability to assess efficiency trade-offs among different data structure implementations or combinations.
- Implement and know the application of algorithms for sorting and pattern matching.
- Design programs using a variety of data structures, including hash tables, binary and general tree structures, search trees, tries, heaps, graphs and AVL-trees.

COURSE SYLLABUS

MODULE-I

Introduction to Data Structures, abstract data types, Linear list – singly linked list implementation, insertion, deletion and searching operations on linear list, Stacks-Operations, array and linked representations of stacks, stack applications, Queues-operations, array and linked representations.

MODULE- II

Dictionaries: linear list representation, skip list representation, operations - insertion, deletion and searching.

Hash Table Representation: Hash functions, collision resolution-separate chaining, open addressing-linear probing, quadratic probing, double hashing, rehashing, extendible hashing.

MODULE-III

Search Trees: Binary Search Trees, Definition, Implementation, Operations-Searching, Insertion and Deletion, AVLTrees, Definition, Height of an AVL Tree, Operations–Insertion, Deletion and Searching, Red–Black, Splay Trees.

MODULE-IV

Graphs: Graph Implementation Methods. Graph Traversal Methods.

Sorting: Heap Sort, External Sorting - Model for external sorting, Merge Sort.

MODULE-V

Pattern Matching and Tries: Pattern matching algorithms-Brute force, the Boyer-Moore algorithm, the Knuth- Morris - Pratt algorithm, Standard Tries,

Compressed Tries, and Suffix tries.

TEXT BOOKS:

- 1. Fundamentals of Data Structures in C, 2ndEdition, E. Horowitz, S. Sahni and Susan Anderson Freed, Universities Press.
- 2. Data Structures using C-A.S. Tanenbaum, Y. Langsam and M.J. Augenstein, PHI/Pearson Education.

REFERENCE BOOK:

1. Data Structures: A Pseudo code Approach with C, 2ndEdition, R.F. Gilberg and B.A. Forouzan, Cengage Learning.